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1. Introduction
The scope of high-performance computing is rapidly expanding from single parallel systems to

clusters of heterogeneous sequential and parallel systems. Moreover, as applications become more
complex, they grow more irregular, with data-dependent execution behavior, and more dynamic, with
time-varying resource demands. Consequently, even small changes in application structure can lead
to large changes in observed performance. This performance sensitivity is a direct consequence of the
complexity of resource interaction and a clear indication that resource management must evolve with
applications. With the emergence of computational grids and their ever-changing resource base,
resource management must become more flexible and responsive to changing resource availability
and resource demands.

To support creation of nimble applications for computational grids, we believe one must not only
tightly integrate compilers, languages, libraries, algorithms, problem-solving environments, runtime
systems, schedulers, and tools but also break down the barrier that separates program creation from
execution and post-mortem optimization. This view is based on our experience building performance
instrumentation and analysis tools for parallel systems [5, 6, 8], integrating runtime measurement and
deep compile-time analysis [1], and from an ongoing series of discussions application, compiler,
library, and runtime system developers.2

In this integrated model, high-level problem solving environments (PSEs) allow users to compose
programs from configurable modules, each with a performance specification interface that describes
the expected module behavior as a function of available resources.  Using PSE specifications, whole
program compilers generate configurable object programs that include embedded performance
instrumentation and support for runtime validation of performance specifications. During execution,
these configurable programs dynamically adapt to changing resource availability, invoking compilers
to generate code variants optimized for current conditions and exploiting adaptive runtime systems to
negotiate program behavior and resource management.

To support dynamic performance adaptation and distributed optimization in the grid environment,
we are building a suite of performance instrumentation, analysis and presentation tools that includes
distributed performance sensors and resource policy actuators, fuzzy logic rule bases for adaptive
control, and immersive visualization systems for real-time visualization and direct manipulation of
software behavior. With this context, the remainder of this paper is organized as follows. In §2, we
                                                          
1 This work was supported in part by the Defense Advanced Research Projects Agency under DARPA contracts DABT63-
94-C0049 (SIO Initiative), F30602-96-C-0161, and DABT63-96-C-0027 by the National Science Foundation under grants
NSF CDA 94-01124 and ASC 97-20202, and by the Department of Energy under contracts DOE B-341494, W-7405-ENG-
48, and 1-B-333164.
2 In particular, the GrADS team of Fran Berman, Jack Dongarra, Ian Foster, Dennis Gannon, Lennart Johnsson, Ken
Kennedy, Carl Kesselman, and Rich Wolski has shared stimulating ideas on all aspects of computational grids.



2

*ULG
$SSOLFDWLRQ 9LUWXH

$XWRSLORW

6HQVRU

6HQVRU

$FWXDWRU

$FWXDWRU

'HFLVLRQ
3URFHGXUH

Figure 1 Distributed Software Visualization and Control

summarize our approach to building grid performance tools. This is followed in §3–§4 by a
description of our  grid instrumentation and visualization toolkits, respectively called Autopilot and
Virtue.  In §5, we describe related work, followed in §6 by a summary of future directions.

2. Grid Performance Tools
To create a performance measurement and analysis substrate for computational grids, we are

developing two interoperable toolkits for measurement and visualization.  Autopilot, our distributed
performance measurement and resource control system, is based on our experiences using the Pablo
performance toolkit for application measurement [5,6], I/O characterization [10], and WWW traffic
analysis.

Autopilot is complemented by Virtue, an immersive environment that accepts real-time
performance data from Autopilot and allows users to change software behavior and resource policies
by directly manipulating representations of software structure and dynamics. In tandem, Autopilot
and Virtue allow application developers and performance analysts to capture, analyze, visualize and
steer distributed computations that execute on thousands of distributed processors.

Autopilot and Virtue are built atop portions of the Pablo toolkit [5,6] and the Globus runtime
system. Both Autopilot and Virtue use the Globus toolkit [1] for wide area communication and task
management.  Because Globus supports multiple communication protocols, including shared
memory, MPI, and TCP/IP, it unites parallel systems, PC and workstation clusters, and wide-area
networks, allowing Autopilot and Virtue to interoperate via in a single communication model. In
addition, Autopilot and Virtue both use the Pablo Self-Defining Data Format (SDDF) as their
medium of information exchange – Autopilot generates runtime information in SDDF format and
Virtue accepts SDDF data for immersive display.

Because Virtue displays are coupled to Autopilot sensors and actuators using SDDF, Virtue can
display real-time performance data from the geographically distributed components of a grid
application and allow users to change software behavior simply by grasping and manipulating
representations of computation.  As shown in Figure 1, these manipulations are translated
automatically to Autopilot actuator commands for the relevant software component.  In this model,
the user replaces Autopilot’s decision procedures as an intelligent steering agent.

3. Autopilot: Distributed Performance Optimization
On heterogeneous collections of geographically distributed computing resources, the execution

context may not be repeatable across program executions and resource availability may change during
execution. In such chaotic environments, only real-time, distributed measurement and dynamic
optimization can adapt to changing application resource demands.

To meet these demands, Autopilot [9] integrates application and system instrumentation with
resource policies and distributed decision procedures. The resulting closed loop adaptive control
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system can automatically configure resources based on application request patterns and system
performance. In consequence, application and runtime library developers can create nimble software
that optimizes performance in response both changing demands and resource availability.

3.1 Toolkit Structure
The Autopilot library contains the following components
• Distributed performance sensors that capture quantitative application and system performance

data, with configurable options for data buffering, local reduction, and transmission.
• Software actuators that can enable and configure application behavior and resource

management policies.
• Qualitative behavioral classification tools, based on hidden Markov models and artificial

neural networks, which describe application resource request patterns (e.g., large read
requests or short computation intervals).

• An extensible self-defining data format (SDDF) that separates the structure of sensor data
from its semantics.

• Fuzzy logic decision procedures that accept performance sensor data and both choose and
configure resource management policies via distributed actuators.

• Distributed name servers that support registration by remote sensors and actuators and
property-based requests for sensors and actuators by remote clients.

• Sensor and actuator clients that interact with remote sensors and actuators, monitoring sensor
data and issuing commands to actuators.

In this design, shown in Figure 2, performance instrumentation sensors capture and compute
quantitative application and system performance metrics. Qualitative application behavior is obtained
via automatic behavioral classification techniques and shared via the same sensor distribution
mechanisms. The qualitative and quantitative data are used by a hierarchy of remote clients that
contain decision procedures for choosing and configuring application and system resource
management policies via software actuators.

3.2 Instrumentation and Control Mechanisms
To use Autopilot, an application developer places sensors and actuators in the source code,

specifying the program variables that sensors should monitor and the control points that can be
modified by actuators.  Configuration options also allow one to control performance data buffer sizes
and management policies, transmission frequencies to external clients, and attached data reduction
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Figure 2 Autopilot Adaptive Control Toolkit Structure
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functions to be applied before sensor data recording.
During execution, sensors and actuators can operate in either procedural or threaded mode.  In

procedural mode, they are invoked each time the application control flow reaches the relevant sensor
or actuator.  The advantage of this approach is that the granularity of measurement and control is
determined solely by application behavior.  However, the application can respond to changing
environmental conditions only when control flow reaches an actuator.

Conversely, in threaded mode, the sensor or actuator executes in a separate thread, passively
monitoring or changing application variables.  Although this approach decouples monitoring or
control frequency from control flow, it sacrifices precise synchronization with program state changes.

The functionality of Autopilot sensors and actuators can be extended via attached functions that
process raw sensor data before it is recorded (e.g., to compute sliding window averages from data
samples) or act on actuator commands using local data (e.g., to translate a command to increase a
cache size into a specific expansion increment).  This extension interface also enables derivation of
qualitative behaviors from quantitative data – we have developed hidden Markov models and neural
networks to classify I/O access patterns using request sizes and byte offsets.

Finally, external clients can dynamically attach to sensors and actuators based on tag matching.
When sensors and actuators are created, they register with the Autopilot manager, specifying a set of
tags.  Clients can query the manager with a tag set, retrieving Globus pointers to any sensors or
actuators with matching tags.  With the pointers, the clients can attach to the sensors and actuators
without knowledge of network location and either begin extracting performance data or exercising
control.

3.3 Flexible Decision Procedures
Many control systems intertwine control mechanisms and policies.  Although this may simplify

design of a domain-specific control system, it makes it difficult to retarget the controller to a new
environment or resource domain.  Autopilot decouples resource policy decisions from the
sensor/actuator mechanisms for control, allowing one to change policies without change to the policy
mechanisms.

Standard implementations of policy decision procedures are often either algorithmic or
conditionals or based on decision tables (e.g., using ideas from classic control theory).  One of the
lessons from parallel and distributed system performance analysis [7,8] is that performance
optimization goals often conflict (e.g., the desire for high throughput and low response time).
Moreover, the space of effective operating points for computational grid applications and their
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resources is poorly understood, enormously complex, and highly non-convex.  Hence, it is impossible
to describe a compact set of rules that will guarantee high performance.

To resolve this delimma, Autopilot includes a fuzzy logic engine that accepts sensor inputs and a
resource management rule base and produces actuator controls. The attraction of fuzzy logic is its
support for potentially conflicting rules, each of which can be partially true.  By weighting these
conflicting rules based on their relative truth, fuzzy logic can generate policies that smoothly balance
conflicting goals [12].

As illustrated in Figure 3, Autopilot sensors capture quantitative and qualitative performance data
that is fuzzified – converted to fuzzy sets. The fuzzy logic engine uses the rule base to evaluate this
transformed data. The decision process' defuzzifier then transforms the fuzzy set outputs of all active
rules into values for actuator control. When the actuators receive these requests, they change the
target parameters within the system.

3.4 Standard Performance Daemons and Portable Interfaces
Autopilot also provides standard performance daemons that capture network and operating

system performance data on distributed hosts. Typical data include processor utilization, disk activity,
context switches, interrupts, memory utilization, paging activity, and network latencies. Using
Autopilot’s attribute-based registration mechanism, the daemons register with the Autopilot manger,
enabling remote clients and decision processes to acquire data simply by attaching to the relevant
daemon.

Finally, to enable “anywhere, anytime” performance analysis, Autopilot includes a portable Java
interface for sensor data display and actuator control. This interface, called Autodriver, allows users
to query the Autopilot manager for sensors, display selected sensor data using simple Java graphics,
and inject changes with actuators using standard graphical widgets.

3.5 PPFS II: An Autopilot Case Study
High-performance computing has produced a variety of potential I/O configurations (e.g., disk

data-striping factors, file and prefetching policies, and caching policies). Developing models for
configuring parallel systems and distributed grid applications to effectively manage I/O resources and

PPFS II Library Client Autopilot Manager

Decision Server

SIO APISIO API

Caching RBCaching RB

UNIX

CacheCache

BaseFileBaseFile

FileFile

CacheCache

Base FileBase File

FileFile

File Close SensorFile Close Sensor

File Open SensorFile Open Sensor

Library Exit SensorLibrary Exit Sensor

ControlControl

Caching Decision
Procedure

Caching Decision
Procedure

Caching Decision
Procedure

Caching Decision
Procedure

I/O Statistics &
Classifier

I/O Statistics &
Classifier

I/O Statistics &
Classifier

I/O Statistics &
Classifier

Request SensorRequest SensorRequest SensorRequest Sensor

Classification
Period

Classification
Period

Classification
Period

Classification
Period

Replacement PolicyReplacement PolicyReplacement PolicyReplacement Policy

Cache Block SizeCache Block SizeCache Block SizeCache Block Size

Cache SizeCache SizeCache SizeCache Size

Figure 4 PPFS II Grid I/O Architecture



6

achieve good performance requires an exploration of this range of I/O configurations.
As a test of Autopilot functionality, as well as to address a difficult resource management

problem, we have developed PPFS II, an adaptive, intelligent portable parallel file system. PPFSII
relies on Autopilot sensors for real-time performance measurement, a fuzzy logic rule base for
dynamic matching of I/O policies to application access patterns, and actuators to realize policy
decisions. As  illustrated in Figure 4, PPFS II is a user-level library built atop Autopilot that adapts
file caching policies, relying on the underlying system software for physical I/O.

As a quantitative basis for adaptive performance optimization, instrumentation sensors capture
salient aspects of both the application stimuli and system responses. Complementing quantitative
performance data, knowledge of qualitative application behavior (e.g., sequential file access or
latency-dominated communication) is obtained from automatic I/O pattern classification techniques
[7]. The PPFS II fuzzy logic rule base supports adaptive striping (i.e., file distribution across variable
numbers of disks) based on I/O contention and redundant storage to create multiple file
representations that can be accessed efficiently by differing application access patterns.

Our experiences with PPFS II have shown that it is possible to achieve major performance
improvements by adaptively matching access patterns to available resources and caching, prefetching,
and file placement policies [7, 9]. Moreover, the Autopilot fuzzy logic rule base has allowed us to
balance the desire for low latency access when there are only a small number of competing I/O
streams against the need for high throughput when large numbers of tasks read or write files.

4. Virtue: Performance Immersion and Interactive Steering
For application developers and performance analysts to optimize the behavior of grid

applications, they must understand the interactions of tens of distributed parallel systems connected
by high-bandwidth networks, all accessing distributed secondary and tertiary storage systems, and
containing thousands of processors. Although Autopilot and other measurement tools for

Figure 5 Virtue Hierarchical Views of Distributed Computations
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computational grids provide the requisite performance data, the volume of data can be very large.
This data must either be reduced or transformed to improve human comprehension.

We believe new performance visualization systems must more fully exploit human sensory
capabilities and that they must support real-time display and analysis of codes as they execute. We are
constructing a new, collaborative virtual environment, called Virtue [7,8], which is designed to
eliminate the barrier separating the real world of users from the abstract world of software and its
dynamics by making large, complex software and its behavior tangible entities that can be understood
and manipulated in the same ways as the physical environment.

4.1 Toolkit Structure
The Virtue toolkit includes the following components

• Hierarchical graphs that show software structure, dynamics, and performance.

• Software component controls for direct manipulation of software behavior and structure.

• Manipulation tools for augmented interactions within the virtual environment.

• Multimedia annotation tools for distributed, collaborative exploration and recording.

• Standard external interfaces to Autopilot performance sensors and actuators for capturing
software behavior and instantiating software changes.

The result is a high modality performance display and analysis system that allows users to
interactively “drill down” from high-level geographic views of network traffic to low-level task or
procedure dynamics.

4.2 Visualization Metaphors
Virtue and Autopilot work together to allow users to monitor and steer distributed computations

in real time. Given the diversity and varying resolutions of real-time data, the underlying data
collection system must intelligently capture only the data necessary for the current visualization. As
users change visualization focus, Autopilot also changes the focus of its performance data collection.

Figure 6 Virtue Time Tunnel View
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In the context of computational grids, Virtue defines a visualization hierarchy for managing
performance detail. As illustrated in Figure 5, at the highest level, users can view communication
among the geographically distributed sites of an application’s execution. Using data from the
Autopilot daemons described in §3.4, users can judge communication network latencies, site
utilization, and network routing.

Given a high-level perspective, users can select notes at multiple sites to “drill down” for more
detail on the computation at those sites. At this lower level, users can interact with a time tunnel
metaphor [4], illustrated in Figure 6, that shows the evolutionary behavior of all tasks at the selected
site(s). The time tunnel represents task behavior as time lines along the periphery of a cylinder, with
each line segment colored to denote the dominant activity during the associated interval. Chords
through the interior of the time tunnel cylinder represent messages flowing between interacting tasks.

From the time tunnel’s aggregate view of task behavior at a particular site, one can glean insights
about communication and computation delays.  From this insight, one can drill down further by
selecting a single task for more detailed analysis. This final level displays a call graph of the
executing procedures, with call graph vertices color-coded to show performance metrics.

The Virtue 3-D call graph display allows users to map a variety of statistics to each vertex and
edge. In Figure 5, the color of each call graph vertex is bound to relative execution time during a
sliding window. In this mapping, procedures that consume large amounts of processor time are shown
as red, whereas those that consume little time are blue. However, Virtue supports a much richer set of
mappings, allowing call graph attributes to be bound to invocation counts and hardware performance
metrics (e.g., cache misses or floating point operations).

4.3 Direct Manipulation Tools
Visualization is but one aspect of optimization – it provides the insights needed to tune grid codes

but not the mechanisms. For this reason, Virtue includes a toolkit for directly manipulating visual
objects.   As suggested by Figure 7, these tools allow users to display additional information about
graphs or calculate a derived metric.

Figure 7 Virtue Magic Lens
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In most cases, a 3-D visualization shows only a portion of the information associated with high-
dimensional performance data. Virtue’s generalized magnifying glass, called a magic lens, allows
users to uncover this additional information by interactively focusing a tool on a portion of the
visualization. For example, in a call graph visualization, the magic lens can expose hardware counter
data, procedure names, or invocation counts when held above a call graph vertex.

Virtue’s cutting plane enables users to slice a Virtue graph and compute metrics on the
partitioned components.  For example, if the cutting plane bisects a group of edges, the plane may
compute the minimum, maximum, or average values mapped to the edges.   In a time tunnel, these
metrics correspond to communication volume or counts.

Finally, a set of actualization interfaces allow users to directly manipulate visualizations –
grasping and adjusting glyphs to change software behavior (e.g., changing cache size by moving a
cache size slider). These actualization interfaces (e.g., three-dimensional sliders attached to graph
vertices) are bound to Autopilot actuators. When a user changes the setting of the actualization
interface, the change is injected into the executing system via Autopilot actuators.

5. Related Work
Software mediated dynamic adaptation has been applied in many domains, including real-time and
fault-tolerant systems, dynamic load balancing, on-line configuration management and adaptive
input/output systems [11]. The Autopilot toolkit differs by emphasizing portable performance steering
and closed-loop adaptive control and by decoupling the steering infrastructure from the policy
domain.

Likewise, a plethora of techniques for distributed decision making have been proposed,
ranging from decision tables and trees through standard control theory to fuzzy logic. Although each
has strengths, fuzzy logic targets precisely the attributes of the performance optimization problem that
challenge classic techniques, namely conflicting goals and poorly understood optimization spaces
[12]. Autopilot builds on this observation by coupling a configurable fuzzy logic rule base for
distributed decision making with wide area performance sensors and policy control actuators.

Virtue shares many attributes with emerging information visualization systems, though its
focus on performance data immersion, real-time display, and direct manipulation for grid control is
unique. The notion of virtual tools, including magic lenses, is rooted in work by Bier et al [2].

6. Conclusions
The combination of Autopilot’s distributed, real-time measurement infrastructure and Virtue’s

immersive environment is an important step in creating a flexible software toolkit for grid application
development, analysis, and tuning. Using Autopilot data, Virtue users can interactively explore
multiple levels of detail, drilling down from geographic scale visualizations to the behavior of code in
a single procedure.

Despite the promise of Autopilot and Virtue, much work remains. In particular, the Virtue
actualization interfaces are incomplete, with tighter coupling to remote applications required.
Moreover, a richer set of direct manipulation tools is needed, and we must enable drilldown from
procedure call graphs to actual source code.

To enhance the Autopilot toolkit, we plan to develop a new set of attached functions for local data
reduction, expand the sensor suite by fully integrating our I/O characterization software, and develop
new fuzzy logic rule bases for network management and distributed task scheduling.

Finally, we are continuing to test the integrated Autopilot/Virtue toolkit with emerging grid
applications.
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